Gating and Inward Rectifying Properties of the MthK K+ Channel with and without the Gating Ring

نویسندگان

  • Yang Li
  • Ian Berke
  • Liping Chen
  • Youxing Jiang
چکیده

In MthK, a Ca2+-gated K+ channel from Methanobacterium thermoautotrophicum, eight cytoplasmic RCK domains form an octameric gating ring that controls the intracellular gate of the ion conduction pore. The binding of Ca2+ ions to the RCK domains alters the conformation of the gating ring, thereby opening the gate. In the present study, we examined the Ca2+- and pH-regulated gating and the rectifying conduction properties of MthK at the single-channel level. The open probability (Po) of MthK exhibits a sigmoidal relationship with intracellular [Ca2+], and a Hill coefficient >1 is required to describe the dependence of Po on [Ca2+], suggesting cooperative Ca2+ activation of the channel. Additionally, intracellular Ca2+ also blocks the MthK pore in a voltage-dependent manner, rendering an apparently inwardly rectifying I-V relation. Intracellular pH has a dual effect on MthK gating. Below pH 7.5, the channel becomes insensitive to Ca2+. This occurs because the gating ring is structurally unstable at this pH and tends to disassemble (Ye, S., Y. Li, L. Chen, and Y. Jiang. 2006. Cell. 126:1161-1173). In contrast, above pH 7.5, a further increase in pH shifts the Po-[Ca2+] relation towards a lower Ca2+ concentration, augments Po at saturating [Ca2+], and activates the channel even in the absence of Ca2+. Channel activity is marked by bursts of rapid openings and closings separated by relatively longer interburst closings. The duration of interburst closing and the burst length are highly Ca2+ and pH dependent, whereas the kinetics of intraburst events is Ca2+ and pH independent. The rapid intraburst openings and closings are also observed with the isolated MthK pore lacking the attached intracellular gating ring. The fast kinetic events, independent of both Ca2+ and pH, therefore appear to be determined by processes occurring within the ion conduction pore, whereas the slow events reflect the gating process controlled by Ca2+ and pH through the gating ring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal Structures of a Ligand-free MthK Gating Ring: Insights into the Ligand Gating Mechanism of K+ Channels

MthK is a prokaryotic Ca(2+)-gated K(+) channel that, like other ligand-gated channels, converts the chemical energy of ligand binding to the mechanical force of channel opening. The channel's eight ligand-binding domains, the RCK domains, form an octameric gating ring in which Ca(2+) binding induces conformational changes that open the channel. Here we present the crystal structures of the Mth...

متن کامل

Calcium-dependent Gating of MthK, a Prokaryotic Potassium Channel

MthK is a calcium-gated, inwardly rectifying, prokaryotic potassium channel. Although little functional information is available for MthK, its high-resolution structure is used as a model for eukaryotic Ca(2+)-dependent potassium channels. Here we characterize in detail the main gating characteristics of MthK at the single-channel level with special focus on the mechanism of Ca(2+) activation. ...

متن کامل

Intrinsic gating properties of a cloned G protein-activated inward rectifier K+ channel

The voltage-, time-, and K(+)-dependent properties of a G protein-activated inwardly rectifying K+ channel (GIRK1/KGA/Kir3.1) cloned from rat atrium were studied in Xenopus oocytes under two-electrode voltage clamp. During maintained G protein activation and in the presence of high external K+ (VK = 0 mV), voltage jumps from VK to negative membrane potentials activated inward GIRK1 K+ currents ...

متن کامل

A Unique Voltage Sensor Sensitizes the Potassium Channel AKT2 to Phosphoregulation

Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (K(weak) channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by shifting its activation threshold far ...

متن کامل

Crystal structure of a Ba(2+)-bound gating ring reveals elementary steps in RCK domain activation.

RCK domains control activity of a variety of K(+) channels and transporters through binding of cytoplasmic ligands. To gain insight toward mechanisms of RCK domain activation, we solved the structure of the RCK domain from the Ca(2+)-gated K(+) channel, MthK, bound with Ba(2+), at 3.1 Å resolution. The Ba(2+)-bound RCK domain was assembled as an octameric gating ring, as observed in structures ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2007